NOTATION

X, coordinate measured from the diaphragm along the shock tube channel, m; L, length, m; t, time
measured from the time of diaphragm rupture, sec; T, temperature, °K; p, pressure bar; g, density, kg/m?;
a, speed of sound, m/sec; u, stream velocity, m/sec; U, shock velocity, m/sec; u, molecular weight, kg/
kg - mole; M, stream or shock Mach number; vy, ratio of the specific heats; I, dimensionless length, %,
dimensionless time,

LITERATURE CITED

1, C. E. Whitliff, M. R. Wilson, and A. Hertzberg, in: Mechanika [Periodic Collection of Translations
of Foreign Articles], No. 1 (1960), _

2, V. Ya. Bezmenov, L. B. Belyaev, and P. M, Shirmanov, Survey, N. E. Zhukovskii Central Aerohydro-
dynamics Institute {in Russian], No, 365, ONTI TSAGI (1971).

3. A. G. Gaydon and I. R. Hurle, Shock Tube in High Temperature Chemical Physics, Reinhold.

4. H. Ertel, in: Physics of High-Speed Processes [Russian translation], Vol. 3, Mir, Moscow (1971),
p. 103,

5, D. W. Holder and D, L. Schultz, ARC Report and Memoranda, No. 3265 (1960). ,

6. 1. Glass and G. Patterson, in: Shock Tubes [Russian translation], IL, Moscow (1962), p. 138.

7. -Hickman and Kaiser, Raketn. Tekh., Kosmonavt., No. 7 (1973).

FLOW OF A VISCOUS TWO-TEMPERATURE
NONEQUILIBRIUM IONIZED RADIATING GAS
OVER BLUNT BODIES ‘

.. B, Gavin, Yu. P. Lun'kin, UDC 533.6.011
and V. ¥. Mymrin

This paper investigates hypersonic flow of a monatomic viscous two-temperature nonequilibrium
ionized radiating gas over blunt bodies. The transport coefficients are evaluated to a high-
order approximation and their influence on the heat flux to the wall is analyzed.

An investigation of flow of a nonequilibrium ionized radiating gas over blunt bodies is a matter of great
interest. The analogous problems were examined in [1-8] for a perfect gas, in [7, 8] (single-temperature
approximation), and in [9, 10] (two-temperature approximation) for a viscous gas. However, it is suggested
even in [9, 10] that the ionization reactions are frozen, radiation is absent, and the transport coefficients are
calculated using very simple classical theory [11],

In this paper the problem of flow over a blunt body is posed in the most general form: the gas is re-
garded as viscous, heat-conducting, two-temperature, nonequilibrium-ionized, and radiating, and the trans-
port coefficients are determined from high-order approximation theory.

The kinetic model of a gas (argon is chosen here) provides for atom—atom and electron—atom collisional
ionizing reactions via an excited level
A4 A=A A A A=At et 4, 1)

AteeA*te A* ez A" + 2, (2)

and also photon-ionization reactions with the ground level
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Fig. 1, The electron thermal conductivity A g (J/m . sec- deg) in the third
approximation (1, 2) and accord.mg to {11] (3, 4) as a function of the de-
gree of ionization, for p = 10° N/m?% Ty, = 2-10*Kand two values of Te:
a) Te = 16- 10%K; b) 12 10%K.

Fig. 2. Profiles of nonequilibrium and equilibrium ionization, atom—

ion temperature, and electron temperature of gases in the shock layer for
Moo= 30, P = 100 N/m? L = 0.04 m, 0o = 1073, Tpeo= 300°K, Tgw = 10%K,
Ty = 2000°K (@, ag, RT/V%, and ¢ are dimensionless quantities).

Al hw==A* L (3)

Expressions for the reaction rates for Egs. (1)-(3) were given in [4, 7].

The initial system of equations includes the continuity- equation, the energy equation for atom—ion and
electron gases, the relaxation equation for the rate of ionization, andthe radiative transfer equation [7, 12, 13],

To solve the problem we write these equations in a body-fixed coordinate system and transform them
within the well-known thin shock-layer model [14]. Neglecting pressure variation across the layer, allowing
for ambipolar diffusion and the presence of an internal electric field, and accounting for the radiative transfer
equation in the plane slab approximation, we arrive at the following system of equations:

0
2 o) + - 9 =0, @
ox
w dp,ixa_u @
pu Ox +pe Ay dx (.\M dy)
pu& _va_a"Oi:ma(n.aa +’;Lea+}:‘R)—'a—J'i_y’ (6)
Jx dy dy

3 (5 (5 .\ _op, . ops
— | —=RT — | — RT =y v =
oo 2 h)+pvay( RTw ) = T°%,

oy %y
- Eaan:aa - ER ﬁR - KT](’iaa + f"LR), (7)
a (5 0 (5 op, ap,
— | =RT tpv— | —RT @) =u-re fvie
Puax(gReoc) pvay(zR a) ude o
eE )V Wey | g, + 0 — KTt + &yl -+ ErTL
TRLE YV iy ay T Wy T Wy, ea+ aa' faa RIYR> (8)
p=pR(Ty+ aT,), (9
cos 02 — o (1 —a)x,(S,~1,), 10)
dy

where S, is the source function,
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Fig. 3. The convective heat flux to the wall as a
function of Mach number for the cases where the
transport coefficients are calculated in higher-order
approximations (1a), and according to [11] (2a), and
the radiative heat flux distribution (b) in the shock
layer. The flow conditions are p, = 100 N/m?, L =
0.04 m, 0oo=10"3, Thew= 300°K, Tew = 10K, Ty =
2000°K (Qgws 9Rs KW/m? Mw, and ¢ are dimen-
sionless quantities),

2 1_
X STFE BT, 1)

l—oa oE

The boundary equations at the shock wave (we assume that the shock is a surface of discontinuity for
the gasdynamic parameters) are the Rankine—Hugoniot relations, supplemented by the conditions for the
degree of ionization o, = g and the electron temperature Ty = Tgg.

At the body surface the zero-slip conditions uw = 0, vy = 0 must be satisfied, and the heavy-component
temperature can be placed equal to the wall temperature Thy = Tyw. The statement of the boundary conditions
for the degree of ionization and the electron temperature must include formation of a wall layer of spatial
positive charge. For a nonconducting wall and with no emission of electrons from the surface we have [9]

de| _ 1 (’ﬁe_w)‘”aw (12)
dyly Daw\ m,
d_Ti — i_ In m, > 1 ] Ry (KT )3 . (13)
dy w 2 Q'ﬂ'me }“ew "11/2’

In writing boundary conditions for the radiation we assume that the gas does not radiate, I =0 ahead
of the shock wave, and that there is radiative energy balance at the body

I =8B,(T,) -+ (1 —9) I (14)

The expression for the spectral flux of radiative energy, obtained in the plane slab approximation for
the case 6 = 1 and neglecting surface radiation from the body because of the low temperature, can be written

as follows:
T.

v Tvs
gro =20 S,E,(t,—t)dt, — | S,E,(t,—,)dt,], (15)

0 Ty

where
- 4

E,(7) = j o 2exp(—w2)do, T, = ) o1l —a)x,dy, %, = o;im,.
! 0
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8

To calculate the total flux qg =

L —

P

4Ry d, we assume a multiband approximation for the absorption ccef-

ficient and use experimental values for the cross section for photoionization from the ground state 0y = 34-
10~ e¢m? from the data of [15].

As a first step toward the solution in the entire subsonic region we consider the flow near the stagna-
tion point. Here we assume that all the dependent variables, apart from the tangential velocity component

u =y (y)%, the quantities r = x, and the pressure, determined by the Newtonian formula, are functions of a
single variable y [14]. Then Eqgs, (4)-(8) reduce to ordinary differential equations.

We introduce the variable n and express u, and v in terms of f(n):

y .

Vo |2 V. ~ V. dy
n= d 3 =—F ’ == T
) (Lpsus) gpy u 2Lf ), v . f(m) i

We now convert to dimensionless variables:

Then near the staghation point Eqs. (4)-(8) take the form (we omit the bars above the dimensionless
variables)

1 i(ldi)+~ﬂ_l_ s A=A

o) =0, (16)
dg dt 2 o

_1_ d (L—d_a‘) ’ Ad_OC_‘_L((Pan_’_(Pe‘:Jf_(pR):O’ (17)
dg P

! dT 3~ 21 11 daldT
Ldn) [B g 2 L 1) dadr,
£ 5 dg

2 [=-4dp [ 1 1 du dp ] 2
di ' Se nla dg dz | "

(wei + meu)

-

_2em R L or yary®e 2 r ) IR g, (18)

5 5 o 5 o

1 d ldTe)J_fi[- _ L1 daldT,

|5 Lo oy — | =2

e dt (\Pre dE 5 Sc n? dE | de

—__2—!:5(([30(1—:—(‘33(1—1"@13) ——!—’(‘pCL—l‘ i{)_;i_LL{ Z?)_
g

(19)
The corresponding boundary conditions can be written as

da 172
£=0¢= - Seule

== — (Z‘U:v
& o),

ar, [ [ om 312 ,
Th:Tw,—:~{ln( )— ]p—fﬂﬁfﬂdw, 20y
dg 5 2nm, @ (1) o

E=1, =2, a=qa, Th:Thsr Te:Tes‘

(21)
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Here
I = ppfpgius, Sc = p/pDy, Pry, = BRp/2h,, Pr,=5Ru/2M,.

In order to solve this system of equations we must know {, Sc, Prp, Pre, i.e., the transport coefficients
as a function of the thermodynamic parameters of the gas,

It was shown in [19] that for ionized gases one must calculate these coefficients in higher-order ap-
proximations than are provided by the simplest classical theory. A method was proposed in [13] which makes
it possible to calculate the transport coefficients in higher approximation for a two-temperature partially
ionized gas, using a modified Chapman—Enskog method. Here a second-order approximation is sufficient
for the viscosity coefficient, and a third-order approximation is sufficient for the elsctron thermal conductiv-
ity.

In this work we calculated the transport coefficients in higher approximations for the case of two-tem-
perature nonequilibrium ionized argon, The interaction potentials of the various particle pairs were chosen
as recommended in [16]. The investigation showed that our results for the general case agree well with the
data of Devoto {16, 17} in the one-temparature approximation and with Spitzer and Harm {18] for a fully ionized
gas, ‘ :

It was found that, in general, the transport coefficients depend on the four independent parameters p,
Th’ Te’ a.

Figure 1 shows results of calculating the electron thermal-conductivity coefficient, It can be seen that
in the third approximation A4 is considerably greater than A calculated using very simple classical theory
[11].

Figures 2 and 3 show some results of the calculated flow over a body near the stagnation point. The
solution was found by the sweep method, using double iteration on the BESM-4 computer. The gasdynamic
field and the shock-layer standoff distance were determined during the internal iterations, and the radiation
terms were improved in the external iterations. '

Figure 2 shows the distribution of a(g), ap(¢), Th(s) and Tg(¢). It can be seen that the flow is ap-
preciably nonequilibrium in most of the shock layer. Near the wall T, exceeds T. A similar effect was
noted in [9], where the special case of frozen flow at small Mach number was examined.

Figure 3 shows the convective heat flux gcy to the body surface as a function of Mach number, and also
the distribution of radiative heat flux aRr in the shock layer for M, = 28 and 30, It can be seen that calculation
of the transport coefficients in the higher approximations leads to an appreciable increase (up to 30%) in Qg
compared with a calculation using transport coefficients derived from the simplest classical theory. By
comparing Figs. 2 and 3b, we can see that the maximum of qp_lies in the cumulative ionization front region.

Investigations have shown that for the initial conditions considered the influence of radiation on the flow
field is slight and the radiative flux to the body surface is less than the convective flux, However, asthe Mach
number increases, qRry increases more rapidly than qpy. The appreciable blocking of qi by the wall region
can also be seen.

NOCTATION

A, A*, atoms in the ground state and an excited state; AT, singly charged ion; x, y, coordinates; u, v,
velocity components along the x and y axes, respectively; r, distance from the body axis of symmetry; £,
dimensionless coordinate across the shocklayer; V., Mw, gas velocity and Mach number in the incident
stream; p, o, @, pressure, density, and degree of ionization of the gas; op, degree of equilibrium ionization
of the gas; Ty, Te, atom~ion and electron temperatures of the gas; Vi, diffusion velocity of the ions; Jj, mass
flux of ions; E, internal electric field intensity; R, specific gas constant; K, Boltzmann constant; vj, Tj,
ionization frequency and temperature; By, (T), Planck function; »,, absorption coefficient ch)rr u_nit mass of an
atomic gas; 7, optical depth; oj, cross section for photoionization from the ground state; IV, I, spectral
radiative intensities propagating in the positive (+) and negative (—) directions of the ¢ axis; Qe convective
energy fluxes of atom—ion and electrongas; qr,» 4R» .spectral and total radiative energy fluxes; e, electron
charge; m,, m,, masses of atom and electron; fgus Deqs Tate of ionization by atom~—atom and electron—atom
collisions; ﬁR, rate of photoionization; wej, Wg rate of elastic energy exchange of electrons with ions and
atoms; £, {g, Mmean energy of electrons formed by atomic ionization and photoionization; k, density rate
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before and after the shock wave; u, Aps Ae, Da, coefficients of viscosity, atom—ion and electron thermal
conductivities, and ambipolar diffusion; &, surface emissivity; n;, ion concentration; Pr, Prandtl number;
Sc, Schmidt number; I = pu/pgu g, dimensionless parameter; h, e, subscripts referring to parameters of the
atom—ion and the electron gas, respectively; «, s, w, subscripts referring to parameters of the gas in the
incident flow, immediately behind the shock wave, and at the body, respectively.
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A CLASS OF MULTIPLE INTEGRALS OF
TRANSFER THEORY

M. I. Zhurina, A. M. Popova, UDC 539.125.523
and A. P. Prudnikov

We consider a class of multiple integrals of transfer theory under the assumption that the scat-
tering field function may be exponential.

The scattering amplitude of two particles is determined by the Lippmann—Schwinger integral equation

B3]

Vik, p)t(p, k', E)d
E—p*+i0 . (1)

tk, k', Ey=V(, k)4 Y

=1
where

Vik k)=

(2;)3 gv expl—i(k —k)r]V(r)dr

2,
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